Navigation
Youtube Translate: Automate Transcription & Translation - MCP Implementation

Youtube Translate: Automate Transcription & Translation

Automate video transcription, translation, and smart summaries with our MCP server. Search transcripts, generate subtitles, and unlock insights across platforms effortlessly.

Research And Data
4.6(118 reviews)
177 saves
82 comments

Ranked in the top 1% of all AI tools in its category

About Youtube Translate

What is YouTube Translate: Automate Transcription & Translation?

YouTube Translate MCP is a Model Context Protocol (MCP) server designed to streamline video content processing. It leverages the YouTube Translate API to automate transcription, translation, and summarization of videos, while enabling precise keyword-based search within multimedia content. This tool empowers developers and content creators to efficiently manage multilingual video assets through a standardized API interface.

How to Use YouTube Translate: Automate Transcription & Translation?

Implementation follows three core steps: installation via package managers or Docker, configuration of API credentials and environment variables, and execution of processing workflows. Developers can integrate the server into applications using RESTful endpoints, with optional debugging through system logs for troubleshooting video processing delays.

Youtube Translate Features

Key Features of YouTube Translate: Automate Transcription & Translation?

  • Language Agnosticism: Supports over 100 languages for transcription and translation
  • Format Flexibility: Processes videos in MP4, WebM, and AVI formats natively
  • Contextual Summarization: Generates searchable text summaries with timestamp markers
  • Batch Processing: Handles multiple video files simultaneously through API queues
  • Custom Workflows: Integrates with CI/CD pipelines via Docker orchestration

Use Cases of YouTube Translate: Automate Transcription & Translation?

Primarily used in:

  • Global Education Platforms: Creating multilingual course materials
  • Corporate Training: Archiving and indexing meeting recordings
  • Media Distribution: Preparing content for international streaming
  • Accessibility Solutions: Providing real-time subtitles for live events
  • Content Moderation: Analyzing spoken content for compliance checks

Youtube Translate FAQ

FAQ from YouTube Translate: Automate Transcription & Translation?

How does pricing work?

The core server is open-source under MIT license, but API usage depends on YouTube Translate's commercial pricing tiers.

What output formats are supported?

Generates SRT subtitles, JSON metadata files, and plain text transcripts with optional language codes.

Can it handle live streams?

Real-time processing requires streaming input through compatible protocols like RTMP, with latency under 3 seconds for basic workflows.

What about audio quality requirements?

Optimal performance requires 44.1kHz stereo audio;降噪算法自动处理低质量源文件.

Where is data processed?

By default uses Google Cloud regions, but可定制Kubernetes部署到私有服务器.

Content

YouTube Translate MCP

smithery badge

A Model Context Protocol (MCP) server for accessing the YouTube Translate API, allowing you to obtain transcripts, translations, and summaries of YouTube videos.

Features

  • Get transcripts of YouTube videos
  • Translate transcripts to different languages
  • Generate subtitles in SRT or VTT format
  • Create summaries of video content
  • Search for specific content within videos

Installation

Installing via Smithery

To install youtube-translate-mcp for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @brianshin22/youtube-translate-mcp --client claude

Installing Manually

This package requires Python 3.12 or higher:

# Using uv (recommended)
uv pip install youtube-translate-mcp

# Using pip
pip install youtube-translate-mcp

Or install from source:

# Clone the repository
git clone https://github.com/yourusername/youtube-translate-mcp.git
cd youtube-translate-mcp

# Using uv (recommended)
uv pip install -e .

# Using pip
pip install -e .

Usage

To run the server:

# Using stdio transport (default)
YOUTUBE_TRANSLATE_API_KEY=your_api_key youtube-translate-mcp

# Using SSE transport
YOUTUBE_TRANSLATE_API_KEY=your_api_key youtube-translate-mcp --transport sse --port 8000

Docker

You can also run the server using Docker:

# Build the Docker image
docker build -t youtube-translate-mcp .

# Run with stdio transport
docker run -e YOUTUBE_TRANSLATE_API_KEY=your_api_key youtube-translate-mcp

# Run with SSE transport
docker run -p 8000:8000 -e YOUTUBE_TRANSLATE_API_KEY=your_api_key youtube-translate-mcp --transport sse

Environment Variables

  • YOUTUBE_TRANSLATE_API_KEY: Required. Your API key for accessing the YouTube Translate API.

Deployment with Smithery

This package includes a smithery.yaml file for easy deployment with Smithery.

To deploy, set the YOUTUBE_TRANSLATE_API_KEY configuration parameter to your YouTube Translate API key.

Development

Prerequisites

  • Python 3.12+
  • Docker (optional)

Setup

# Create and activate a virtual environment using uv (recommended)
uv venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install dependencies using uv
uv pip install -e .

# Alternatively, with standard tools
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
pip install -e .

Testing with Claude Desktop

To test with Claude Desktop (macOS/Windows only), you'll need to add your server to the Claude Desktop configuration file located at ~/Library/Application Support/Claude/claude_desktop_config.json.

Method 1: Local Development

Use this method if you want to test your local development version:

{
    "mcpServers": {
        "youtube-translate": {
            "command": "uv",
            "args": [
                "--directory",
                "/ABSOLUTE/PATH/TO/youtube-translate-mcp",
                "run",
                "-m", "youtube_translate_mcp"
            ],
            "env": {
              "YOUTUBE_TRANSLATE_API_KEY": "YOUR_API_KEY"
            }
        }
    }
}

Make sure to replace /ABSOLUTE/PATH/TO/youtube-translate-mcp with the actual path to your project directory.

Method 2: Docker-based Testing

If you prefer to test using Docker (recommended for more reproducible testing):

{
  "mcpServers": {
    "youtube-translate": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-e",
        "YOUTUBE_TRANSLATE_API_KEY",
        "youtube-translate-mcp"
      ],
      "env": {
        "YOUTUBE_TRANSLATE_API_KEY": "YOUR_API_KEY"
      }
    }
  }
}

Replace YOUR_API_KEY with your actual YouTube Translate API key.

For more information on using MCP servers with Claude Desktop, see the MCP documentation.

Debugging

  • The normal MCP Inspector has a built in timeout for MCP tool calls, which is generally too short for these video processing calls (as of March 13, 2025). Better to use Claude Desktop and look at the MCP logs from Claude at ~/Library/Logs/Claude/mcp-server-{asfasf}.log.
  • Can do tail -f {log-file}.log to follow as you interact with Claude.

License

MIT

Related MCP Servers & Clients