Unsloth MCP Server
An MCP server for Unsloth - a library that makes LLM fine-tuning 2x faster with 80% less memory.
What is Unsloth?
Unsloth is a library that dramatically improves the efficiency of fine-tuning large language models:
- Speed : 2x faster fine-tuning compared to standard methods
- Memory : 80% less VRAM usage, allowing fine-tuning of larger models on consumer GPUs
- Context Length : Up to 13x longer context lengths (e.g., 89K tokens for Llama 3.3 on 80GB GPUs)
- Accuracy : No loss in model quality or performance
Unsloth achieves these improvements through custom CUDA kernels written in OpenAI's Triton language, optimized backpropagation, and dynamic 4-bit quantization.
Features
- Optimize fine-tuning for Llama, Mistral, Phi, Gemma, and other models
- 4-bit quantization for efficient training
- Extended context length support
- Simple API for model loading, fine-tuning, and inference
- Export to various formats (GGUF, Hugging Face, etc.)
Quick Start
Install Unsloth: pip install unsloth
Install and build the server:
cd unsloth-server
npm install
npm run build
Add to MCP settings:
{
"mcpServers": {
"unsloth-server": {
"command": "node",
"args": ["/path/to/unsloth-server/build/index.js"],
"env": {
"HUGGINGFACE_TOKEN": "your_token_here" // Optional
},
"disabled": false,
"autoApprove": []
}
}
}
Available Tools
check_installation
Verify if Unsloth is properly installed on your system.
Parameters : None
Example :
const result = await use_mcp_tool({
server_name: "unsloth-server",
tool_name: "check_installation",
arguments: {}
});
list_supported_models
Get a list of all models supported by Unsloth, including Llama, Mistral, Phi, and Gemma variants.
Parameters : None
Example :
const result = await use_mcp_tool({
server_name: "unsloth-server",
tool_name: "list_supported_models",
arguments: {}
});
load_model
Load a pretrained model with Unsloth optimizations for faster inference and fine-tuning.
Parameters :
model_name
(required): Name of the model to load (e.g., "unsloth/Llama-3.2-1B")
max_seq_length
(optional): Maximum sequence length for the model (default: 2048)
load_in_4bit
(optional): Whether to load the model in 4-bit quantization (default: true)
use_gradient_checkpointing
(optional): Whether to use gradient checkpointing to save memory (default: true)
Example :
const result = await use_mcp_tool({
server_name: "unsloth-server",
tool_name: "load_model",
arguments: {
model_name: "unsloth/Llama-3.2-1B",
max_seq_length: 4096,
load_in_4bit: true
}
});
finetune_model
Fine-tune a model with Unsloth optimizations using LoRA/QLoRA techniques.
Parameters :
model_name
(required): Name of the model to fine-tune
dataset_name
(required): Name of the dataset to use for fine-tuning
output_dir
(required): Directory to save the fine-tuned model
max_seq_length
(optional): Maximum sequence length for training (default: 2048)
lora_rank
(optional): Rank for LoRA fine-tuning (default: 16)
lora_alpha
(optional): Alpha for LoRA fine-tuning (default: 16)
batch_size
(optional): Batch size for training (default: 2)
gradient_accumulation_steps
(optional): Number of gradient accumulation steps (default: 4)
learning_rate
(optional): Learning rate for training (default: 2e-4)
max_steps
(optional): Maximum number of training steps (default: 100)
dataset_text_field
(optional): Field in the dataset containing the text (default: 'text')
load_in_4bit
(optional): Whether to use 4-bit quantization (default: true)
Example :
const result = await use_mcp_tool({
server_name: "unsloth-server",
tool_name: "finetune_model",
arguments: {
model_name: "unsloth/Llama-3.2-1B",
dataset_name: "tatsu-lab/alpaca",
output_dir: "./fine-tuned-model",
max_steps: 100,
batch_size: 2,
learning_rate: 2e-4
}
});
generate_text
Generate text using a fine-tuned Unsloth model.
Parameters :
model_path
(required): Path to the fine-tuned model
prompt
(required): Prompt for text generation
max_new_tokens
(optional): Maximum number of tokens to generate (default: 256)
temperature
(optional): Temperature for text generation (default: 0.7)
top_p
(optional): Top-p for text generation (default: 0.9)
Example :
const result = await use_mcp_tool({
server_name: "unsloth-server",
tool_name: "generate_text",
arguments: {
model_path: "./fine-tuned-model",
prompt: "Write a short story about a robot learning to paint:",
max_new_tokens: 512,
temperature: 0.8
}
});
export_model
Export a fine-tuned Unsloth model to various formats for deployment.
Parameters :
model_path
(required): Path to the fine-tuned model
export_format
(required): Format to export to (gguf, ollama, vllm, huggingface)
output_path
(required): Path to save the exported model
quantization_bits
(optional): Bits for quantization (for GGUF export) (default: 4)
Example :
const result = await use_mcp_tool({
server_name: "unsloth-server",
tool_name: "export_model",
arguments: {
model_path: "./fine-tuned-model",
export_format: "gguf",
output_path: "./exported-model.gguf",
quantization_bits: 4
}
});
Advanced Usage
Custom Datasets
You can use custom datasets by formatting them properly and hosting them on Hugging Face or providing a local path:
const result = await use_mcp_tool({
server_name: "unsloth-server",
tool_name: "finetune_model",
arguments: {
model_name: "unsloth/Llama-3.2-1B",
dataset_name: "json",
data_files: {"train": "path/to/your/data.json"},
output_dir: "./fine-tuned-model"
}
});
Memory Optimization
For large models on limited hardware:
- Reduce batch size and increase gradient accumulation steps
- Use 4-bit quantization
- Enable gradient checkpointing
- Reduce sequence length if possible
Troubleshooting
Common Issues
- CUDA Out of Memory : Reduce batch size, use 4-bit quantization, or try a smaller model
- Import Errors : Ensure you have the correct versions of torch, transformers, and unsloth installed
- Model Not Found : Check that you're using a supported model name or have access to private models
Version Compatibility
- Python: 3.10, 3.11, or 3.12 (not 3.13)
- CUDA: 11.8 or 12.1+ recommended
- PyTorch: 2.0+ recommended
Performance Benchmarks
Model |
VRAM |
Unsloth Speed |
VRAM Reduction |
Context Length |
Llama 3.3 (70B) |
80GB |
2x faster |
>75% |
13x longer |
Llama 3.1 (8B) |
80GB |
2x faster |
>70% |
12x longer |
Mistral v0.3 (7B) |
80GB |
2.2x faster |
75% less |
- |
Requirements
- Python 3.10-3.12
- NVIDIA GPU with CUDA support (recommended)
- Node.js and npm
License
Apache-2.0