Navigation
MCP Memory Service: Semantic Storage & Scalable Persistence - MCP Implementation

MCP Memory Service: Semantic Storage & Scalable Persistence

Maximize Claude's recall with MCP Memory Service—semantic storage powered by ChromaDB and sentence transformers ensures reliable, scalable persistence for AI workflows.

Knowledge And Memory
4.1(199 reviews)
298 saves
139 comments

74% of users reported increased productivity after just one week

About MCP Memory Service

What is MCP Memory Service: Semantic Storage & Scalable Persistence?

MCP Memory Service is a high-performance semantic storage solution designed for scalable data persistence and advanced vector database operations. Built on ChromaDB and optimized with Sentence Transformers, it enables efficient semantic search, embedding generation, and real-time data management. The service supports cross-platform acceleration via CUDA, DirectML, and MPS, ensuring compatibility with macOS, Windows, and Linux architectures. It provides configurable hardware acceleration options, environment overrides, and fallback mechanisms to adapt to diverse deployment scenarios.

How to Use MCP Memory Service: Semantic Storage & Scalable Persistence?

Implementation involves three core steps: configure environment variables for hardware acceleration, deploy the MCP server with platform-specific scripts, and integrate semantic storage operations via the provided API. Windows users utilize the dedicated wrapper script for dependency management, while macOS and Linux deployments leverage environment flags to optimize model loading. Advanced users can customize embedding models, batch sizes, and logging levels through configuration parameters. Troubleshooting tools and test suites ensure seamless integration and performance validation.

MCP Memory Service Features

Key Features of MCP Memory Service: Semantic Storage & Scalable Persistence?

  • Cross-platform acceleration: Supports CUDA/ROCm for Linux, DirectML for Windows, and MPS for Apple Silicon
  • Embedded fallback mechanisms: Automatic CPU degradation with ONNX/DirectML when GPU resources are unavailable
  • Configurable embedding models: Override default models and batch sizes via environment variables
  • Comprehensive testing framework: Includes unit tests, environment verification, and installation validation
  • Production-ready optimizations: Batch processing, recursion error mitigation, and logging granularity

Use Cases of MCP Memory Service: Semantic Storage & Scalable Persistence?

Primary applications include:

  • AI-driven search engines requiring semantic similarity analysis
  • Real-time data analytics platforms with vector database needs
  • Cross-platform applications demanding hardware-accelerated processing
  • Enterprise data management systems requiring scalable persistence
  • Research environments testing novel embedding models

MCP Memory Service FAQ

FAQ from MCP Memory Service: Semantic Storage & Scalable Persistence?

What acceleration is available on Windows?
CUDA for NVIDIA GPUs, DirectML for AMD/Intel GPUs, and CPU fallback with ONNX
How do I resolve macOS dependency conflicts?
Use the --force-compatible-deps flag during installation
Can I use custom embedding models?
Yes, specify via MCP_MEMORY_MODEL_NAME environment variable
What logging levels are supported?
DEBUG, INFO, WARNING, ERROR - configure via LOG_LEVEL parameter
How do I validate my deployment?
Run the test_installation.py script and verify_environment_enhanced.py checks

Content

MCP Memory Service

License: MIT smithery badge

An MCP server providing semantic memory and persistent storage capabilities for Claude Desktop using ChromaDB and sentence transformers. This service enables long-term memory storage with semantic search capabilities, making it ideal for maintaining context across conversations and instances.

grafik Memory Service MCP server

Features

  • Semantic search using sentence transformers
  • Natural language time-based recall (e.g., "last week", "yesterday morning")
  • Tag-based memory retrieval system
  • Persistent storage using ChromaDB
  • Automatic database backups
  • Memory optimization tools
  • Exact match retrieval
  • Debug mode for similarity analysis
  • Database health monitoring
  • Duplicate detection and cleanup
  • Customizable embedding model
  • Cross-platform compatibility (Apple Silicon, Intel, Windows, Linux)
  • Hardware-aware optimizations for different environments
  • Graceful fallbacks for limited hardware resources

Installation

Quick Start (Recommended)

The enhanced installation script automatically detects your system and installs the appropriate dependencies:

# Clone the repository
git clone https://github.com/doobidoo/mcp-memory-service.git
cd mcp-memory-service

# Create and activate a virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Run the installation script
python install.py

The install.py script will:

  1. Detect your system architecture and available hardware accelerators
  2. Install the appropriate dependencies for your platform
  3. Configure the optimal settings for your environment
  4. Verify the installation and provide diagnostics if needed

Windows Installation (Special Case)

Windows users may encounter PyTorch installation issues due to platform-specific wheel availability. Use our Windows-specific installation script:

# After activating your virtual environment
python scripts/install_windows.py

This script handles:

  1. Detecting CUDA availability and version
  2. Installing the appropriate PyTorch version from the correct index URL
  3. Installing other dependencies without conflicting with PyTorch
  4. Verifying the installation

Installing via Smithery

To install Memory Service for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @doobidoo/mcp-memory-service --client claude

Detailed Installation Guide

For comprehensive installation instructions and troubleshooting, see the Installation Guide.

Claude MCP Configuration

Standard Configuration

Add the following to your claude_desktop_config.json file:

{
  "memory": {
    "command": "uv",
    "args": [
      "--directory",
      "your_mcp_memory_service_directory",  // e.g., "C:\\REPOSITORIES\\mcp-memory-service"
      "run",
      "memory"
    ],
    "env": {
      "MCP_MEMORY_CHROMA_PATH": "your_chroma_db_path",  // e.g., "C:\\Users\\John.Doe\\AppData\\Local\\mcp-memory\\chroma_db"
      "MCP_MEMORY_BACKUPS_PATH": "your_backups_path"  // e.g., "C:\\Users\\John.Doe\\AppData\\Local\\mcp-memory\\backups"
    }
  }
}

Windows-Specific Configuration (Recommended)

For Windows users, we recommend using the wrapper script to ensure PyTorch is properly installed:

{
  "memory": {
    "command": "python",
    "args": [
      "C:\\path\\to\\mcp-memory-service\\memory_wrapper.py"
    ],
    "env": {
      "MCP_MEMORY_CHROMA_PATH": "C:\\Users\\YourUsername\\AppData\\Local\\mcp-memory\\chroma_db",
      "MCP_MEMORY_BACKUPS_PATH": "C:\\Users\\YourUsername\\AppData\\Local\\mcp-memory\\backups"
    }
  }
}

The wrapper script will:

  1. Check if PyTorch is installed and properly configured
  2. Install PyTorch with the correct index URL if needed
  3. Run the memory server with the appropriate configuration

Usage

To run the memory server directly (for testing):

# Quick run script (recommended for testing)
python scripts/run_memory_server.py

# For isolated testing of methods
python src/chroma_test_isolated.py

Memory Operations

The memory service provides the following operations through the MCP server:

Core Memory Operations

  1. store_memory - Store new information with optional tags
  2. retrieve_memory - Perform semantic search for relevant memories
  3. recall_memory - Retrieve memories using natural language time expressions
  4. search_by_tag - Find memories using specific tags
  5. exact_match_retrieve - Find memories with exact content match
  6. debug_retrieve - Retrieve memories with similarity scores

Database Management

  1. create_backup - Create database backup
  2. get_stats - Get memory statistics
  3. optimize_db - Optimize database performance
  4. check_database_health - Get database health metrics
  5. check_embedding_model - Verify model status

Memory Management

  1. delete_memory - Delete specific memory by hash
  2. delete_by_tag - Delete all memories with specific tag
  3. cleanup_duplicates - Remove duplicate entries

Configuration Options

Configure through environment variables:

CHROMA_DB_PATH: Path to ChromaDB storage
BACKUP_PATH: Path for backups
AUTO_BACKUP_INTERVAL: Backup interval in hours (default: 24)
MAX_MEMORIES_BEFORE_OPTIMIZE: Threshold for auto-optimization (default: 10000)
SIMILARITY_THRESHOLD: Default similarity threshold (default: 0.7)
MAX_RESULTS_PER_QUERY: Maximum results per query (default: 10)
BACKUP_RETENTION_DAYS: Number of days to keep backups (default: 7)
LOG_LEVEL: Logging level (default: INFO)

# Hardware-specific environment variables
PYTORCH_ENABLE_MPS_FALLBACK: Enable MPS fallback for Apple Silicon (default: 1)
MCP_MEMORY_USE_ONNX: Use ONNX Runtime for CPU-only deployments (default: 0)
MCP_MEMORY_USE_DIRECTML: Use DirectML for Windows acceleration (default: 0)
MCP_MEMORY_MODEL_NAME: Override the default embedding model
MCP_MEMORY_BATCH_SIZE: Override the default batch size

Hardware Compatibility

Platform Architecture Accelerator Status
macOS Apple Silicon (M1/M2/M3) MPS ✅ Fully supported
macOS Apple Silicon under Rosetta 2 CPU ✅ Supported with fallbacks
macOS Intel CPU ✅ Fully supported
Windows x86_64 CUDA ✅ Fully supported
Windows x86_64 DirectML ✅ Supported
Windows x86_64 CPU ✅ Supported with fallbacks
Linux x86_64 CUDA ✅ Fully supported
Linux x86_64 ROCm ✅ Supported
Linux x86_64 CPU ✅ Supported with fallbacks
Linux ARM64 CPU ✅ Supported with fallbacks

Testing

# Install test dependencies
pip install pytest pytest-asyncio

# Run all tests
pytest tests/

# Run specific test categories
pytest tests/test_memory_ops.py
pytest tests/test_semantic_search.py
pytest tests/test_database.py

# Verify environment compatibility
python scripts/verify_environment_enhanced.py

# Verify PyTorch installation on Windows
python scripts/verify_pytorch_windows.py

# Perform comprehensive installation verification
python scripts/test_installation.py

Troubleshooting

See the Installation Guide for detailed troubleshooting steps.

Quick Troubleshooting Tips

  • Windows PyTorch errors : Use python scripts/install_windows.py
  • macOS Intel dependency conflicts : Use python install.py --force-compatible-deps
  • Recursion errors : Run python scripts/fix_sitecustomize.py
  • Environment verification : Run python scripts/verify_environment_enhanced.py
  • Memory issues : Set MCP_MEMORY_BATCH_SIZE=4 and try a smaller model
  • Apple Silicon : Ensure Python 3.10+ built for ARM64, set PYTORCH_ENABLE_MPS_FALLBACK=1
  • Installation testing : Run python scripts/test_installation.py

Project Structure

mcp-memory-service/
├── src/mcp_memory_service/      # Core package code
│   ├── __init__.py
│   ├── config.py                # Configuration utilities
│   ├── models/                  # Data models
│   ├── storage/                 # Storage implementations
│   ├── utils/                   # Utility functions
│   └── server.py                # Main MCP server
├── scripts/                     # Helper scripts
├── memory_wrapper.py            # Windows wrapper script
├── install.py                   # Enhanced installation script
└── tests/                       # Test suite

Development Guidelines

  • Python 3.10+ with type hints
  • Use dataclasses for models
  • Triple-quoted docstrings for modules and functions
  • Async/await pattern for all I/O operations
  • Follow PEP 8 style guidelines
  • Include tests for new features

License

MIT License - See LICENSE file for details

Acknowledgments

  • ChromaDB team for the vector database
  • Sentence Transformers project for embedding models
  • MCP project for the protocol specification

Contact

Telegram

Related MCP Servers & Clients