MCP Memory Server
This server implements long-term memory capabilities for AI assistants using mem0 principles, powered by PostgreSQL with pgvector for efficient vector similarity search.
Features
- PostgreSQL with pgvector for vector similarity search
- Automatic embedding generation using BERT
- RESTful API for memory operations
- Semantic search capabilities
- Support for different types of memories (learnings, experiences, etc.)
- Tag-based memory retrieval
- Confidence scoring for memories
- Server-Sent Events (SSE) for real-time updates
- Cursor MCP protocol compatible
Prerequisites
- PostgreSQL 14+ with pgvector extension installed:
# In your PostgreSQL instance:
CREATE EXTENSION vector;
- Node.js 16+
Setup
- Install dependencies:
npm install
- Configure environment variables: Copy .env.sampleto.envand adjust the values:
cp .env.sample .env
Example .env configurations:
# With username/password
DATABASE_URL="postgresql://username:password@localhost:5432/mcp_memory"
PORT=3333
# Local development with peer authentication
DATABASE_URL="postgresql:///mcp_memory"
PORT=3333
- Initialize the database:
npm run prisma:migrate
- Start the server:
npm start
For development with auto-reload:
npm run dev
Using with Cursor
Adding the MCP Server in Cursor
To add the memory server to Cursor, you need to modify your MCP configuration file located at ~/.cursor/mcp.json. Add the following configuration to the mcpServers object:
{
  "mcpServers": {
    "memory": {
      "command": "node",
      "args": [
        "/path/to/your/memory/src/server.js"
      ]
    }
  }
}
Replace /path/to/your/memory with the actual path to your memory server installation.
For example, if you cloned the repository to /Users/username/workspace/memory, your configuration would look like:
{
  "mcpServers": {
    "memory": {
      "command": "node",
      "args": [
        "/Users/username/workspace/memory/src/server.js"
      ]
    }
  }
}
The server will be automatically started by Cursor when needed. You can verify it's working by:
- Opening Cursor
- The memory server will be started automatically when Cursor launches
- You can check the server status by visiting http://localhost:3333/mcp/v1/health
Available MCP Endpoints
SSE Connection
- Endpoint : GET /mcp/v1/sse
- Query Parameters : 
- subscribe: Comma-separated list of events to subscribe to (optional)
 
- Events : 
- connected: Sent on initial connection
- memory.created: Sent when new memories are created
- memory.updated: Sent when existing memories are updated
 
Memory Operations
- Create Memory
POST /mcp/v1/memory
Content-Type: application/json
{
  "type": "learning",
  "content": {
    "topic": "Express.js",
    "details": "Express.js is a web application framework for Node.js"
  },
  "source": "documentation",
  "tags": ["nodejs", "web-framework"],
  "confidence": 0.95
}
- Search Memories
GET /mcp/v1/memory/search?query=web+frameworks&type=learning&tags=nodejs
- List Memories
GET /mcp/v1/memory?type=learning&tags=nodejs,web-framework
Health Check
GET /mcp/v1/health
Response Format
All API responses follow the standard MCP format:
{
  "status": "success",
  "data": {
    // Response data
  }
}
Or for errors:
{
  "status": "error",
  "error": "Error message"
}
Memory Schema
- id: Unique identifier
- type: Type of memory (learning, experience, etc.)
- content: Actual memory content (JSON)
- source: Where the memory came from
- embedding: Vector representation of the content (384 dimensions)
- tags: Array of relevant tags
- confidence: Confidence score (0-1)
- createdAt: When the memory was created
- updatedAt: When the memory was last updated