Navigation
MCP Assistant Server: Intelligent Automation & Workflow Optimization - MCP Implementation

MCP Assistant Server: Intelligent Automation & Workflow Optimization

The MCP Assistant Server empowers teams by analyzing complex tasks and recommending optimal tools, streamlining workflows and boosting productivity through intelligent automation.

Research And Data
4.7(63 reviews)
94 saves
44 comments

Users create an average of 49 projects per month with this tool

About MCP Assistant Server

What is MCP Assistant Server: Intelligent Automation & Workflow Optimization?

MCP Assistant Server is an advanced automation framework designed to streamline complex workflows through intelligent task analysis, adaptive tool recommendation, and dynamic context management. It acts as a middleware solution to optimize developer productivity by automating repetitive processes, integrating heterogeneous tools, and maintaining operational continuity across environments.

How to use MCP Assistant Server: Intelligent Automation & Workflow Optimization?

Implementation follows three core steps:

  1. Server Configuration: Deploy the server via Node.js and configure environment variables in cursor_config.json or cursor_config.json with necessary API endpoints and security parameters
  2. IDE Integration: Register the server in IDE-specific configuration files (Cursor/Cursor) using standardized JSON schema for command routing
  3. Operational Execution: Leverage IDE command panels or API calls to trigger analysis workflows, obtain tool recommendations, and manage execution contexts programmatically

MCP Assistant Server Features

Key Features of MCP Assistant Server: Intelligent Automation & Workflow Optimization?

  • Context-Aware Analysis Engine: Parses natural language task descriptions to identify dependencies, parameters, and execution contexts
  • Hybrid Recommendation System: Combines rule-based logic with machine learning models to suggest optimal toolchains
  • Stateful Workflow Management: Maintains persistent session data across tool executions with error recovery mechanisms
  • Decentralized Discovery Service: Automatically detects compatible MCP services and integrates them into the workflow graph

Use cases of MCP Assistant Server: Intelligent Automation & Workflow Optimization?

Typical applications include:

  • Automating CI/CD pipelines by analyzing deployment manifests and recommending containerization tools
  • Integrating dev tools across platforms through standardized MCP interfaces
  • Optimizing debugging workflows by suggesting relevant profilers and analyzers based on error patterns
  • Creating adaptive development environments that adjust tool configurations based on project requirements

MCP Assistant Server FAQ

FAQ from MCP Assistant Server: Intelligent Automation & Workflow Optimization?

  • Q: What platforms are supported?
    A: Fully compatible with major IDEs through MCP protocol adherence. Official support for Cursor and Cursor environments.
  • Q: How do I extend existing workflows?
    A: Implement custom MCP services by adhering to the open API schema and register them through the discovery service
  • Q: What's the update mechanism?
    A: Self-updating capability via semantic versioning with rollback support through Git-based dependency management
  • Q: Can I contribute improvements?
    A: Yes, contributions are welcomed through our GitHub repository. See contribution guidelines

Content

MCP Assistant Server

MCP Assistant Server Logo

License: MIT Node.js Version TypeScript PRs Welcome

🤖 一个强大的 MCP 服务器,提供智能任务分析和工具推荐功能

English | 简体中文

✨ 特性

  • 🎯 智能任务分析 - 自动分析用户任务,提取关键信息
  • 🔍 工具推荐 - 基于任务特点智能推荐最适合的 MCP 工具
  • 🧠 LLM 集成 - 集成大语言模型进行高级分析
  • 🔄 上下文管理 - 智能维护任务执行过程中的上下文信息
  • 🔌 工具发现 - 自动发现和集成可用的 MCP 工具
  • 🚀 高性能 - 异步处理,快速响应
  • 📦 易扩展 - 模块化设计,便于扩展

🚀 快速开始

环境要求

  • Node.js >= 16.0.0
  • npm >= 7.0.0

安装

# 克隆仓库
git clone https://github.com/Lutra23/mcp-assistant-server.git

# 进入项目目录
cd mcp-assistant-server

# 安装依赖
npm install

配置

  1. 复制配置文件模板:
cp mcp-config.json.example mcp-config.json
  1. 根据需要修改 mcp-config.json 配置,现在只支持硅基流动api调用:
{
  "port": 3000,
  "logLevel": "info",
  "llm": {
    "apiKey": "your-api-key"
  }
}

运行

# 开发模式
npm run dev

# 生产模式
npm run build
npm start

📚 在 Cline 中使用

配置 MCP 服务器

  1. 打开 Cline 的 MCP 设置文件:
# Linux/WSL
~/.vscode-server/data/User/globalStorage/rooveterinaryinc.roo-cline/settings/cline_mcp_settings.json

# macOS
~/Library/Application Support/Code/User/globalStorage/rooveterinaryinc.roo-cline/settings/cline_mcp_settings.json

# Windows
%APPDATA%\Code\User\globalStorage\rooveterinaryinc.roo-cline\settings\cline_mcp_settings.json
  1. 添加服务器配置:
{
  "mcpServers": {
    "assistant": {
      "command": "node",
      "args": ["/path/to/mcp-assistant-server/build/index.js"],
      "env": {
        "PORT": "3000",
        "LOG_LEVEL": "info"
      }
    }
  }
}

使用示例

在 Cline 中,你可以使用以下工具:

// 分析任务
<use_mcp_tool>
<server_name>assistant</server_name>
<tool_name>analyze_task</tool_name>
<arguments>
{
  "description": "获取天气信息并保存到文件",
  "context": {
    "location": "上海",
    "format": "json"
  }
}
</arguments>
</use_mcp_tool>

// 推荐工具
<use_mcp_tool>
<server_name>assistant</server_name>
<tool_name>recommend_tools</tool_name>
<arguments>
{
  "taskId": "task-123",
  "useHybridRecommendation": true
}
</arguments>
</use_mcp_tool>

📚 在 Cursor 中使用

配置 MCP 服务器

  1. 打开 Cursor 的配置文件:
# Linux
~/.cursor/cursor_config.json

# macOS
~/Library/Application Support/Cursor/cursor_config.json

# Windows
%APPDATA%\Cursor\cursor_config.json
  1. 添加 MCP 服务器配置:
{
  "mcpServers": {
    "assistant": {
      "command": "node",
      "args": ["/path/to/mcp-assistant-server/build/index.js"],
      "env": {
        "PORT": "3000",
        "LOG_LEVEL": "info"
      }
    }
  }
}

使用方式

在 Cursor 中,你可以通过命令面板(Cmd/Ctrl + Shift + P)使用以下命令:

  1. MCP: 分析任务 - 分析当前选中的代码或文本
  2. MCP: 推荐工具 - 获取针对当前任务的工具推荐
  3. MCP: 更新上下文 - 更新任务上下文信息

也可以通过 Cursor API 在插件中使用:

import { workspace } from 'cursor';

// 分析任务
const analysis = await workspace.mcp.callTool('assistant', 'analyze_task', {
  description: '当前任务描述',
  context: {
    // 上下文信息
  }
});

// 获取工具推荐
const recommendations = await workspace.mcp.callTool('assistant', 'recommend_tools', {
  taskId: 'current-task-id'
});

🎯 核心功能

任务分析器

分析用户输入的任务描述,提取关键信息:

  • 任务类型识别
  • 参数提取
  • 上下文关联
  • 依赖分析

工具推荐系统

根据任务特点智能推荐工具:

  • 基于规则的推荐
  • 混合推荐算法
  • 上下文感知
  • 历史数据分析

上下文管理器

维护任务执行过程中的上下文信息:

  • 状态追踪
  • 数据持久化
  • 会话管理
  • 错误恢复

📦 项目结构

src/
├── controllers/     # 控制器层
│   └── LLMApiController.ts
├── core/           # 核心功能实现
│   ├── TaskAnalyzer.ts
│   ├── ToolRecommender.ts
│   └── ContextManager.ts
├── services/       # 服务层
│   ├── LLMService.ts
│   └── MCPDiscoveryService.ts
├── routes/         # 路由定义
│   └── llmApiRoutes.ts
└── types/          # 类型定义
    └── interfaces.ts

🔌 API 文档

详细的 API 文档请查看 API 文档

🤝 贡献指南

我们欢迎所有形式的贡献,无论是新功能、文档改进还是问题反馈。详情请查看 贡献指南

📄 更新日志

查看 CHANGELOG.md 了解详细的更新历史。

📝 开源协议

本项目采用 MIT 许可证 - 查看 LICENSE 了解详情。

🙏 致谢

感谢所有为这个项目做出贡献的开发者们!

Made with ❤️ by Lutra23

Related MCP Servers & Clients