Fledge MCP Server
This is a Model Context Protocol (MCP) server that connects Fledge functionality to Cursor AI, allowing the AI to interact with Fledge instances via natural language commands.
Prerequisites
- Fledge installed locally or accessible via API (default: http://localhost:8081)
- Cursor AI installed
- Python 3.8+
Installation
- Clone this repository:
git clone https://github.com/Krupalp525/fledge-mcp.git
cd fledge-mcp
- Install the dependencies:
pip install -r requirements.txt
Running the Server
- Make sure Fledge is running:
fledge start
- Start the MCP server:
python mcp_server.py
For secure operation with API key authentication:
python secure_mcp_server.py
- Verify it's working by accessing the health endpoint:
curl http://localhost:8082/health
You should receive "Fledge MCP Server is running" as the response.
Connecting to Cursor
In Cursor, go to Settings > MCP Servers
Add a new server:
* URL: http://localhost:8082/tools
* Tools file: Upload the included tools.json or point to its local path
For the secure server, configure the "X-API-Key" header with the value from the api_key.txt file that is generated when the secure server starts.
Test it: Open Cursor's Composer (Ctrl+I), type "Check if Fledge API is reachable," and the AI should call the validate_api_connection
tool.
Available Tools
Data Access and Management
- get_sensor_data : Fetch sensor data from Fledge with optional filtering by time range and limit
- list_sensors : List all sensors available in Fledge
- ingest_test_data : Ingest test data into Fledge, with optional batch count
Service Control
- get_service_status : Get the status of all Fledge services
- start_stop_service : Start or stop a Fledge service by type
- update_config : Update Fledge configuration parameters
Frontend Code Generation
- generate_ui_component : Generate React components for Fledge data visualization
- fetch_sample_frontend : Get sample frontend templates for different frameworks
- suggest_ui_improvements : Get AI-powered suggestions for improving UI code
Real-Time Data Streaming
- subscribe_to_sensor : Set up a subscription to sensor data updates
- get_latest_reading : Get the most recent reading from a specific sensor
Debugging and Validation
- validate_api_connection : Check if the Fledge API is reachable
- simulate_frontend_request : Test API requests with different methods and payloads
Documentation and Schema
- get_api_schema : Get information about available Fledge API endpoints
- list_plugins : List available Fledge plugins
Advanced AI-Assisted Features
- generate_mock_data : Generate realistic mock sensor data for testing
Testing the API
You can test the server using the included test scripts:
# For standard server
python test_mcp.py
# For secure server with API key
python test_secure_mcp.py
Security Options
The secure server (secure_mcp_server.py) adds API key authentication:
- On first run, it generates an API key stored in api_key.txt
- All requests must include this key in the X-API-Key header
- Health check endpoint remains accessible without authentication
Example API Requests
# Validate API connection
curl -X POST -H "Content-Type: application/json" -d '{"name": "validate_api_connection"}' http://localhost:8082/tools
# Generate mock data
curl -X POST -H "Content-Type: application/json" -d '{"name": "generate_mock_data", "parameters": {"sensor_id": "temp1", "count": 5}}' http://localhost:8082/tools
# Generate React chart component
curl -X POST -H "Content-Type: application/json" -d '{"name": "generate_ui_component", "parameters": {"component_type": "chart", "sensor_id": "temp1"}}' http://localhost:8082/tools
# For secure server, add API key header
curl -X POST -H "Content-Type: application/json" -H "X-API-Key: YOUR_API_KEY" -d '{"name": "list_sensors"}' http://localhost:8082/tools
Extending the Server
To add more tools:
- Add the tool definition to
tools.json
- Implement the tool handler in
mcp_server.py
and secure_mcp_server.py
Production Considerations
For production deployment:
- Use HTTPS
- Deploy behind a reverse proxy like Nginx
- Implement more robust authentication (JWT, OAuth)
- Add rate limiting
- Set up persistent data storage for subscriptions
Deploying on Smithery.ai
The Fledge MCP Server can be deployed on Smithery.ai for enhanced scalability and availability. Follow these steps to deploy:
- Prerequisites
* Docker installed on your local machine
* A Smithery.ai account
* The Smithery CLI tool installed
Build and Deploy
Build the Docker image
docker build -t fledge-mcp .
# Deploy to Smithery.ai
smithery deploy
- Configuration The
smithery.json
file contains the configuration for your deployment:
* WebSocket transport on port 8082
* Configurable Fledge API URL
* Tool definitions and parameters
* Timeout settings
- Environment Variables Set the following environment variables in your Smithery.ai dashboard:
* `FLEDGE_API_URL`: Your Fledge API endpoint
* `API_KEY`: Your secure API key (if using secure mode)
Verification After deployment, verify your server is running:
smithery status fledge-mcp
Monitoring Monitor your deployment through the Smithery.ai dashboard:
* Real-time logs
* Performance metrics
* Error tracking
* Resource usage
Updating To update your deployment:
Build new image
docker build -t fledge-mcp .
# Deploy updates
smithery deploy --update
JSON-RPC Protocol Support
The server implements the Model Context Protocol (MCP) using JSON-RPC 2.0 over WebSocket. The following methods are supported:
initialize
{
"jsonrpc": "2.0",
"method": "initialize",
"params": {},
"id": "1"
}
Response:
{
"jsonrpc": "2.0",
"result": {
"serverInfo": {
"name": "fledge-mcp",
"version": "1.0.0",
"description": "Fledge Model Context Protocol (MCP) Server",
"vendor": "Fledge",
"capabilities": {
"tools": true,
"streaming": true,
"authentication": "api_key"
}
},
"configSchema": {
"type": "object",
"properties": {
"fledge_api_url": {
"type": "string",
"description": "Fledge API URL",
"default": "http://localhost:8081/fledge"
}
}
}
},
"id": "1"
}
tools/list
{
"jsonrpc": "2.0",
"method": "tools/list",
"params": {},
"id": "2"
}
Response: Returns the list of available tools and their parameters.
tools/call
{
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "get_sensor_data",
"parameters": {
"sensor_id": "temp1",
"limit": 10
}
},
"id": "3"
}
Error Codes
The server follows standard JSON-RPC 2.0 error codes:
- -32700: Parse error
- -32600: Invalid Request
- -32601: Method not found
- -32602: Invalid params
- -32000: Server error