Navigation
DockerManager: Auto-Orchestration & Smart Scaling - MCP Implementation

DockerManager: Auto-Orchestration & Smart Scaling

DockerManager seamlessly automates container orchestration, simplifying deployments and scaling with smart, error-free workflows for DevOps excellence.

Developer Tools
4.8(45 reviews)
67 saves
31 comments

Ranked in the top 10% of all AI tools in its category

About DockerManager

What is DockerManager: Auto-Orchestration & Smart Scaling?

DockerManager is an advanced tool designed to automate container orchestration and optimize resource allocation for code execution. It leverages Docker containers to isolate processes from the host system while providing intelligent scaling mechanisms to handle dynamic workloads. The platform seamlessly integrates with LLMs like Claude via the Model Context Protocol, enabling automated workflows for development, testing, and production environments.

How to Use DockerManager: Auto-Orchestration & Smart Scaling?

  1. Install the core package using fastmcp install src/docker_mcp.py.
  2. Launch the MCP Inspector interface to configure workflows.
  3. Deploy applications using pre-defined templates or custom scripts, specifying resource limits and scaling parameters.
  4. Monitor execution via real-time logs and adjust scaling policies dynamically.

DockerManager Features

Key Features of DockerManager: Auto-Orchestration & Smart Scaling?

  • Auto-Detected Package Managers: Identifies and uses pip/npm/apt-get/apk based on container image.
  • Fail-Safe Execution: Implements timeout fallbacks and error recovery for unstable containers.
  • Multi-Environment Support: Works across Python, Node.js, Debian/Ubuntu, and Alpine-based workflows.
  • Security Boundaries: Enforces isolation via Docker namespaces and recommends resource quotas.
  • LLM Integration: Streamlines AI-driven orchestration through API-driven configuration.

Use Cases for DockerManager: Auto-Orchestration & Smart Scaling?

  • Data analysis pipelines with automatic resource provisioning
  • Web service deployments with auto-scaling based on traffic patterns
  • Machine learning model training with GPU resource allocation
  • CI/CD environments with ephemeral container clusters

DockerManager FAQ

FAQ: Troubleshooting DockerManager Issues

  • Port conflicts: Use docker ps to identify conflicting services and reconfigure ports.
  • Docker connectivity errors: Verify daemon status and check /var/run/docker.sock permissions.
  • Container timeouts: Increase timeout thresholds in .dockermanager/config.yml or simplify workflows.
  • Package installation failures: Update base images or use --privileged flag for dependency-heavy tasks.
  • Security recommendations: Regularly audit container images and restrict network policies using Docker Compose.

Content

Docker MCP Server

A powerful Model Context Protocol (MCP) server that executes code in isolated Docker containers and returns the results to language models like Claude.

Features

  • Isolated Code Execution : Run code in Docker containers separated from your main system
  • Multi-language Support : Execute code in any language with a Docker image
  • Complex Script Support : Run both simple commands and complete multi-line scripts
  • Package Management : Install dependencies using pip, npm, apt-get, or apk
  • Container Management : Create, list, and clean up Docker containers easily
  • Robust Error Handling : Graceful timeout management and fallback mechanisms
  • Colorful Output : Clear, color-coded console feedback

Requirements

  • Python 3.9+
  • Docker installed and running
  • fastmcp library

Installation

  1. Clone this repository:

    git clone https://github.com/yourusername/docker_mcp_server.git

cd docker_mcp_server
  1. Create a virtual environment:

    python -m venv venv

source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install required packages:

    pip install -r requirements.txt

Usage

Running the MCP Inspector

To test and explore the server's functionality:

python run_server.py

The MCP Inspector interface will open in your browser at http://localhost:5173.

Available Tools

The Docker MCP server provides the following tools:

1. List Containers

Lists all Docker containers and their details:

  • Parameters :
    • show_all: (Optional) Whether to show all containers including stopped ones (default: True)

2. Create Container

Creates and starts a Docker container with optional dependencies:

  • Parameters :
    • image: The Docker image to use (e.g., "python:3.9-slim", "node:16")
    • container_name: A unique name for the container
    • dependencies: (Optional) Space-separated list of packages to install (e.g., "numpy pandas", "express lodash")

3. Add Dependencies

Installs additional packages in an existing Docker container:

  • Parameters :
    • container_name: The name of the target container
    • dependencies: Space-separated list of packages to install

4. Execute Code

Executes a command inside a running Docker container:

  • Parameters :
    • container_name: The name of the target container
    • command: The command to execute inside the container

5. Execute Python Script

Executes a multi-line Python script inside a running Docker container:

  • Parameters :
    • container_name: The name of the target container
    • script_content: The full Python script content
    • script_args: Optional arguments to pass to the script

6. Cleanup Container

Stops and removes a Docker container:

  • Parameters :
    • container_name: The name of the container to clean up

Examples

Basic Workflow Example

# 1. List existing containers to see what's already running
list_containers()

# 2. Create a new container
create_container(
    image="python:3.9-slim", 
    container_name="python-example", 
    dependencies="numpy pandas"
)

# 3. Execute a command in the container
execute_code(
    container_name="python-example", 
    command="python -c 'import numpy as np; print(\"NumPy version:\", np.__version__)'"
)

# 4. Add more dependencies later
add_dependencies(
    container_name="python-example", 
    dependencies="matplotlib scikit-learn"
)

# 5. List containers again to confirm status
list_containers(show_all=False)  # Only show running containers

# 6. Clean up when done
cleanup_container(container_name="python-example")

Python Data Analysis Example

# 1. Create a container with dependencies
create_container(
    image="python:3.9-slim", 
    container_name="python-test", 
    dependencies="numpy pandas matplotlib"
)

# 2. Execute a Python script
script = """
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Create some data
data = pd.DataFrame({
    'x': np.random.randn(100),
    'y': np.random.randn(100)
})

print(f"Data shape: {data.shape}")
print(f"Data correlation: {data.corr().iloc[0,1]:.4f}")
"""
execute_python_script(container_name="python-test", script_content=script)

# 3. Add additional dependencies later if needed
add_dependencies(container_name="python-test", dependencies="scikit-learn")

# 4. Verify container is running
list_containers(show_all=False)

# 5. Clean up when done
cleanup_container(container_name="python-test")

Node.js Example

# 1. Check for existing Node.js containers
list_containers()

# 2. Create a Node.js container
create_container(
    image="node:16", 
    container_name="node-test", 
    dependencies="express axios"
)

# 3. Execute a Node.js script
execute_code(
    container_name="node-test", 
    command="node -e \"console.log('Node.js version: ' + process.version); console.log('Express installed: ' + require.resolve('express'));\""
)

# 4. Add more dependencies
add_dependencies(container_name="node-test", dependencies="lodash moment")

# 5. Clean up when done
cleanup_container(container_name="node-test")

Package Manager Support

The Docker MCP server automatically detects and uses the appropriate package manager:

  • Python containers : Uses pip
  • Node.js containers : Uses npm
  • Debian/Ubuntu containers : Uses apt-get
  • Alpine containers : Uses apk

For containers where the package manager isn't obvious from the image name, the server attempts to detect available package managers.

Integrating with Claude and Other LLMs

This MCP server can be integrated with Claude and other LLMs that support the Model Context Protocol. Use the fastmcp install command to register it with Claude:

fastmcp install src/docker_mcp.py

Troubleshooting

  • Port Already in Use : If you see "Address already in use" errors, ensure no other MCP Inspector instances are running.
  • Docker Connection Issues : Verify that Docker is running with docker --version.
  • Container Timeouts : The server includes fallback mechanisms for containers that don't respond within expected timeframes.
  • Package Installation Failures : Check that the package name is correct for the specified package manager.
  • No Containers Found : If list_containers shows no results, Docker might not have any containers created yet.

Security Considerations

This server executes code in Docker containers, which provides isolation from the host system. However, exercise caution:

  • Don't expose this server publicly without additional security measures
  • Be careful when mounting host volumes into containers
  • Consider resource limits for containers to prevent DoS attacks

License

MIT License

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Related MCP Servers & Clients