Navigation
Crypto Indicators MCP Server: Real-Time Signals & Pro Strategies - MCP Implementation

Crypto Indicators MCP Server: Real-Time Signals & Pro Strategies

Dominate crypto markets with real-time signals, pro-grade indicators, and battle-tested strategies – your edge, powered by MCP Server. Win.

Research And Data
4.9(71 reviews)
106 saves
49 comments

Ranked in the top 5% of all AI tools in its category

About Crypto Indicators MCP Server

What is Crypto Indicators MCP Server: Real-Time Signals & Pro Strategies?

Crypto Indicators MCP Server is an advanced analytical platform designed for cryptocurrency traders and investors. It delivers real-time market signals and professional trading strategies by processing technical indicators such as MACD, RSI, Bollinger Bands, and Aroon. The server supports customizable parameters, multiple timeframes, and generates actionable outputs for informed decision-making.

How to use Crypto Indicators MCP Server: Real-Time Signals & Pro Strategies?

To utilize the platform, users input structured natural-language queries specifying cryptocurrency pairs, timeframes, indicator parameters, and data points. The server processes these requests instantly, returning formatted outputs like indicator values, strategy signals (-1, 0, 1 for sell/neutral/buy), or visual datasets. Integration with trading platforms or custom workflows is seamless via API or direct data parsing.

Crypto Indicators MCP Server Features

Key Features of Crypto Indicators MCP Server: Real-Time Signals & Pro Strategies?

  • Real-time data processing for major exchanges and altcoins
  • Over 50 technical indicators and 20+ strategies
  • Customizable parameters (timeframes, thresholds, lookback periods)
  • Structured JSON/XML output compatibility
  • Error-handling for invalid inputs or market gaps
  • Multi-currency pair parallel analysis

Use Cases of Crypto Indicators MCP Server: Real-Time Signals & Pro Strategies?

  • Automated trading system triggers
  • Backtesting strategy performance
  • Intraday/long-term trend identification
  • Risk management via multi-indicator consensus
  • Comparative analysis of cross-market patterns

Crypto Indicators MCP Server FAQ

FAQ: Crypto Indicators MCP Server

  • Data Source Reliability: Aggregates from top-tier exchanges with 99.5% uptime
  • Latency: Sub-500ms response for most requests
  • Crypto Support: Covers BTC/USD, ETH/USDT, and 150+ pairs
  • Error Handling: Returns standardized error codes with context explanations
  • Documentation: API Reference and tutorials available

Content

Crypto Indicators MCP Server

An MCP server providing a range of cryptocurrency technical analysis indicators and strategies, empowering AI trading agents to efficiently analyze market trends and develop robust quantitative strategies.

License Node.js Status

Features

  • Technical Indicators : 50+ indicators across trend, momentum, volatility, and volume categories.
  • Trading Strategies : Corresponding strategies outputting signals: -1 (SELL), 0 (HOLD), 1 (BUY).
  • Flexible Data Source : Defaults to Binance, configurable to any ccxt-supported exchange.
  • Modular Design : Indicators and strategies are categorized for easy maintenance.

Installation

Prerequisites

  • Node.js (v18.x or higher)
  • npm (v8.x or higher)

Steps

  1. Clone the Repository :

    git clone https://github.com/kukapay/crypto-indicators-mcp.git

cd crypto-indicators-mcp
  1. Install Dependencies :

    npm install

  2. Configure MCP Client : To use this server with an MCP client like Claude Desktop, add the following to your config file (or equivalent):

    {
    

    "mcpServers": {
    "crypto-indicators-mcp": {
    "command": "node",
    "args": ["path/to/crypto-indicators-mcp/index.js"],
    "env": {
    "EXCHANGE_NAME": "binance"
    }
    }
    }
    }

Available Tools

Trend Indicators

  • calculate_absolute_price_oscillator: Measures the difference between two EMAs to identify trend strength (APO).
  • calculate_aroon: Identifies trend changes and strength using high/low price extremes (Aroon).
  • calculate_balance_of_power: Gauges buying vs. selling pressure based on price movement (BOP).
  • calculate_chande_forecast_oscillator: Predicts future price movements relative to past trends (CFO).
  • calculate_commodity_channel_index: Detects overbought/oversold conditions and trend reversals (CCI).
  • calculate_double_exponential_moving_average: Smooths price data with reduced lag for trend detection (DEMA).
  • calculate_exponential_moving_average: Weights recent prices more heavily for trend analysis (EMA).
  • calculate_mass_index: Identifies potential reversals by measuring range expansion (MI).
  • calculate_moving_average_convergence_divergence: Tracks momentum and trend direction via EMA differences (MACD).
  • calculate_moving_max: Computes the maximum price over a rolling period (MMAX).
  • calculate_moving_min: Computes the minimum price over a rolling period (MMIN).
  • calculate_moving_sum: Calculates the sum of prices over a rolling period (MSUM).
  • calculate_parabolic_sar: Provides stop-and-reverse points for trend following (PSAR).
  • calculate_qstick: Measures buying/selling pressure based on open-close differences (Qstick).
  • calculate_kdj: Combines stochastic and momentum signals for trend analysis (KDJ).
  • calculate_rolling_moving_average: Applies a rolling EMA for smoother trend tracking (RMA).
  • calculate_simple_moving_average: Averages prices over a period to identify trends (SMA).
  • calculate_since_change: Tracks the time since the last significant price change.
  • calculate_triple_exponential_moving_average: Reduces lag further than DEMA for trend clarity (TEMA).
  • calculate_triangular_moving_average: Weights middle prices more for smoother trends (TRIMA).
  • calculate_triple_exponential_average: Measures momentum with triple smoothing (TRIX).
  • calculate_typical_price: Averages high, low, and close prices for a balanced trend view.
  • calculate_volume_weighted_moving_average: Incorporates volume into moving averages for trend strength (VWMA).
  • calculate_vortex: Identifies trend direction and strength using true range (Vortex).

Momentum Indicators

  • calculate_awesome_oscillator: Measures market momentum using midline crossovers (AO).
  • calculate_chaikin_oscillator: Tracks accumulation/distribution momentum (CMO).
  • calculate_ichimoku_cloud: Provides a comprehensive view of support, resistance, and momentum (Ichimoku).
  • calculate_percentage_price_oscillator: Normalizes MACD as a percentage for momentum (PPO).
  • calculate_percentage_volume_oscillator: Measures volume momentum via EMA differences (PVO).
  • calculate_price_rate_of_change: Tracks price momentum as a percentage change (ROC).
  • calculate_relative_strength_index: Identifies overbought/oversold conditions via momentum (RSI).
  • calculate_stochastic_oscillator: Compares closing prices to ranges for momentum signals (STOCH).
  • calculate_williams_r: Measures momentum relative to recent high-low ranges (Williams %R).

Volatility Indicators

  • calculate_acceleration_bands: Frames price action with dynamic volatility bands (AB).
  • calculate_average_true_range: Measures market volatility based on price ranges (ATR).
  • calculate_bollinger_bands: Encloses price action with volatility-based bands (BB).
  • calculate_bollinger_bands_width: Quantifies volatility via band width changes (BBW).
  • calculate_chandelier_exit: Sets trailing stop-losses based on volatility (CE).
  • calculate_donchian_channel: Tracks volatility with high/low price channels (DC).
  • calculate_keltner_channel: Combines ATR and EMA for volatility bands (KC).
  • calculate_moving_standard_deviation: Measures price deviation for volatility (MSTD).
  • calculate_projection_oscillator: Assesses volatility relative to projected prices (PO).
  • calculate_true_range: Calculates daily price range for volatility analysis (TR).
  • calculate_ulcer_index: Quantifies downside volatility and drawdowns (UI).

Volume Indicators

  • calculate_accumulation_distribution: Tracks volume flow to confirm price trends (AD).
  • calculate_chaikin_money_flow: Measures buying/selling pressure with volume (CMF).
  • calculate_ease_of_movement: Assesses how easily prices move with volume (EMV).
  • calculate_force_index: Combines price and volume for momentum strength (FI).
  • calculate_money_flow_index: Identifies overbought/oversold via price-volume (MFI).
  • calculate_negative_volume_index: Tracks price changes on lower volume days (NVI).
  • calculate_on_balance_volume: Accumulates volume to predict price movements (OBV).
  • calculate_volume_price_trend: Combines volume and price for trend confirmation (VPT).
  • calculate_volume_weighted_average_price: Averages prices weighted by volume (VWAP).

Trend Strategies

  • calculate_absolute_price_oscillator_strategy: Generates buy/sell signals from APO crossovers (APO Strategy).
  • calculate_aroon_strategy: Signals trend reversals using Aroon crossovers (Aroon Strategy).
  • calculate_balance_of_power_strategy: Issues signals based on BOP thresholds (BOP Strategy).
  • calculate_chande_forecast_oscillator_strategy: Predicts reversals with CFO signals (CFO Strategy).
  • calculate_kdj_strategy: Combines KDJ lines for trend-based signals (KDJ Strategy).
  • calculate_macd_strategy: Uses MACD crossovers for trading signals (MACD Strategy).
  • calculate_parabolic_sar_strategy: Signals trend direction with PSAR shifts (PSAR Strategy).
  • calculate_typical_price_strategy: Generates signals from typical price trends.
  • calculate_volume_weighted_moving_average_strategy: Issues signals based on VWMA crossovers (VWMA Strategy).
  • calculate_vortex_strategy: Signals trend direction with Vortex crossovers (Vortex Strategy).

Momentum Strategies

  • calculate_momentum_strategy: Issues signals based on momentum direction.
  • calculate_awesome_oscillator_strategy: Signals momentum shifts with AO crossovers (AO Strategy).
  • calculate_ichimoku_cloud_strategy: Generates signals from Ichimoku cloud positions (Ichimoku Strategy).
  • calculate_rsi2_strategy: Signals overbought/oversold with RSI thresholds (RSI Strategy).
  • calculate_stochastic_oscillator_strategy: Uses stochastic crossovers for signals (STOCH Strategy).
  • calculate_williams_r_strategy: Signals momentum reversals with Williams %R (Williams %R Strategy).

Volatility Strategies

  • calculate_acceleration_bands_strategy: Signals breakouts with acceleration bands (AB Strategy).
  • calculate_bollinger_bands_strategy: Issues signals from Bollinger Band breaches (BB Strategy).
  • calculate_projection_oscillator_strategy: Signals volatility shifts with PO (PO Strategy).

Volume Strategies

  • calculate_chaikin_money_flow_strategy: Signals volume pressure with CMF (CMF Strategy).
  • calculate_ease_of_movement_strategy: Issues signals based on EMV trends (EMV Strategy).
  • calculate_force_index_strategy: Signals momentum with force index shifts (FI Strategy).
  • calculate_money_flow_index_strategy: Signals overbought/oversold with MFI (MFI Strategy).
  • calculate_negative_volume_index_strategy: Signals trends with NVI changes (NVI Strategy).
  • calculate_volume_weighted_average_price_strategy: Issues signals from VWAP crossovers (VWAP Strategy).

Usage Examples

Example 1: Calculate MACD Indicator

Input (Natural Language Prompt) :

Calculate the MACD for BTC/USDT on a 1-hour timeframe with fast period 12, slow period 26, signal period 9, and fetch 100 data points.

Output :

{"macd": [...], "signal": [...], "histogram": [...]}

Example 2: Calculate RSI Strategy

Input (Natural Language Prompt) :

Give me the RSI strategy signals for ETH/USDT on a 4-hour timeframe with a period of 14 and 50 data points.

Output :

[-1, 0, 1, 0, ...]

License

This project is licensed under the MIT License - see the LICENSE file for details.

Related MCP Servers & Clients