Navigation
Code2Flow MCP Server: Seamless Workflows, Fearless Innovation - MCP Implementation

Code2Flow MCP Server: Seamless Workflows, Fearless Innovation

Code2Flow MCP Server: Mirror your code’s potential into seamless workflows effortlessly! Boost productivity, simplify complexity, and innovate fearlessly. Your vision, perfected.

Developer Tools
4.8(120 reviews)
180 saves
84 comments

Users create an average of 53 projects per month with this tool

About Code2Flow MCP Server

What is Code2Flow MCP Server: Seamless Workflows, Fearless Innovation?

Imagine a Swiss Army knife for developers, but instead of blades, it slices through code complexity with MCP-powered precision. Code2Flow MCP Server acts as a middleman between your AI tools and source code, turning raw code into actionable call graphs, version checks, and complexity reports—all while sipping coffee (or your preferred beverage).

Key Features of Code2Flow MCP Server: Seamless Workflows, Fearless Innovation?

  • Language buffet: Supports Python, JavaScript, Ruby, PHP—no need to choose between them, just like deciding between pizza and sushi.
  • MCP magician: Speaks the universal MCP protocol, making AI integrations as easy as plugging in a USB.
  • Visual clarity: Outputs call graphs as crisp PNGs, because reading spaghetti code is only fun in horror movies.
  • Code health checks: Diagnoses version mismatches and complexity red flags before they become code zombies.

Code2Flow MCP Server Features

How to use Code2Flow MCP Server: Seamless Workflows, Fearless Innovation?

  1. Clone the repo like a pro: git clone https://github.com/kursk-ye/code2flow-mcp-server.git (nofollow)
  2. Spin up a virtual environment—because compartmentalizing is what adults do.
  3. Install dependencies and code2flow itself (pip’s your wingman here).
  4. Launch the server with python server.py, then high-five your keyboard for effort.

Connect via MCP tools like Claude Desktop or Cursor, and start summoning call graphs with a single API command.

Use Cases of Code2Flow MCP Server: Seamless Workflows, Fearless Innovation?

  • Debugging wizardry: Visualize tangled code flows to spot that elusive bug hiding in plain sight.
  • Team sanity saver: Share standardized code analysis results across a squad of developers.
  • AI-powered docs: Automatically generate call graphs for documentation that actually works.
  • Code diet plan: Identify overly complicated functions needing a refactor detox.

Code2Flow MCP Server FAQ

FAQ from Code2Flow MCP Server: Seamless Workflows, Fearless Innovation?

  • Does it work on Windows 10? Almost, but you’ll need a time machine (Windows 11 only, sorry).
  • Will it slow my system down? Only if you’re running it on a potato-powered computer from 2005.
  • What if the graph looks like abstract art? That means your code needs a vacation—or a refactor.
  • Can I customize output paths? Absolutely! Just tell it where to put files like a digital real estate agent.

Content

Code2Flow MCP 服务器

这是一个将 code2flow 命令行工具包装为 MCP (Model Context Protocol) 服务器的项目。它允许 AI 应用程序通过标准化的 MCP 协议生成和访问代码调用图。

功能特点

  • 分析源代码并生成调用图
  • 支持多种编程语言(Python、JavaScript、Ruby、PHP)
  • 通过 MCP 协议提供服务,易于与 AI 应用集成
  • 图像以 PNG 格式输出
  • 提供版本检查和代码复杂度分析功能

安装要求

  • Python 3.7+
  • Windows 11 或其他支持的操作系统
  • PowerShell 或其他命令行终端
  • 已安装 code2flow 命令行工具

安装步骤

  1. 克隆此仓库
git clone https://github.com/kursk-ye/code2flow-mcp-server.git
cd code2flow-mcp-server
  1. 创建并激活虚拟环境(推荐)
python -m venv venv
.\venv\Scripts\Activate.ps1  # 在 PowerShell 中
  1. 安装依赖项
pip install -r requirements.txt
  1. 安装 code2flow 命令行工具
pip install code2flow

使用方法

直接使用 Python 运行

  1. 启动 MCP 服务器
python server.py

使用 MCP 工具运行

  1. 使用 MCP Inspector 工具
mcp dev server.py
  1. 安装到 Claude Desktop
mcp install server.py
  1. 添加到 Cursor MCP 配置
"code2flow": {
  "command": "cmd",
  "args": [
    "/c",
    "python",
    "path/to/server.py"
  ]
}

可用工具

服务器提供以下 MCP 工具:

  1. generate_call_graph - 生成代码调用图
  2. check_code2flow_version - 检查 code2flow 版本
  3. analyze_code_complexity - 分析代码复杂度

可用资源

服务器提供以下 MCP 资源:

  1. help://code2flow - 帮助文档
  2. languages://supported - 支持的语言列表
  3. call-graph://图像ID - 生成的调用图图像

示例(使用 Python MCP 客户端)

import asyncio
from mcp.client import MCPClient

async def main():
    # 连接到服务器
    client = MCPClient("http://localhost:8000")
    
    # 创建新会话
    session = await client.create_session()
    
    # 调用工具生成调用图
    result = await session.call_tool("generate_call_graph", {
        "source_paths": ["path/to/your/code"],
        "language": "python"
    })
    
    # 获取资源 ID
    print(result)
    
    # 检查code2flow版本
    version_info = await session.call_tool("check_code2flow_version")
    print(version_info)
    
    # 分析代码复杂度
    complexity = await session.call_tool("analyze_code_complexity", {
        "source_path": "path/to/your/code",
        "language": "python"
    })
    print(complexity)

if __name__ == "__main__":
    asyncio.run(main())

配置选项

生成调用图时支持以下参数:

  • source_paths:要分析的源代码文件或目录的路径列表
  • output_path:(可选)输出文件的路径
  • language:(可选)源代码语言(python、js、ruby、php)
  • exclude:(可选)要排除的文件模式列表
  • include:(可选)要包含的文件模式列表

文件结构

  • server.py - 主服务器代码
  • mcp_client_example.py - 客户端示例代码
  • test_server.py - 测试代码
  • requirements.txt - 依赖文件

许可证

MIT

Related MCP Servers & Clients