Navigation
BigQuery Analysis MCP Server: Smarter Analytics, Slash Costs - MCP Implementation

BigQuery Analysis MCP Server: Smarter Analytics, Slash Costs

Unleash BigQuery's full power with MCP Server—smarten analytics, slash costs, and crush data bottlenecks. The pro’s secret weapon for enterprise-grade insights at scale." )

Research And Data
4.9(56 reviews)
84 saves
39 comments

Users create an average of 55 projects per month with this tool

About BigQuery Analysis MCP Server

What is BigQuery Analysis MCP Server: Smarter Analytics, Slash Costs?

This server acts as a middleware solution for executing BigQuery analytics within the Claude Desktop environment. It combines intelligent query validation, cost-control safeguards, and seamless integration to streamline data analysis workflows while minimizing unexpected expenses. Designed for developers and analysts, it ensures secure execution of queries with strict size and cost limits.

How to Use BigQuery Analysis MCP Server: Smarter Analytics, Slash Costs?

  1. Install dependencies and build the server using npm commands.
  2. Configure Claude Desktop by adding server paths in JSON config files (OS-specific paths provided).
  3. Set authentication via gcloud CLI or service account keys as required.
  4. Execute queries through two core methods: dry-run validation for cost estimation and direct execution with safety constraints.

BigQuery Analysis MCP Server Features

Key Features of BigQuery Analysis MCP Server: Smarter Analytics, Slash Costs?

  • Cost-aware Dry Run: Pre-checks query execution costs and resource requirements before actual processing.
  • Enforced Limits: Blocks queries exceeding predefined size/cost thresholds to prevent runaway expenses.
  • Structured Output: Returns results in standardized JSON format for programmatic consumption.
  • Development Assistance: Built-in hot-reload mode for iterative debugging and rapid configuration updates.

Use Cases of BigQuery Analysis MCP Server: Smarter Analytics, Slash Costs?

Optimal for scenarios requiring:

  • Cost-sensitive environments where budget management is critical
  • Rapid prototyping of analytics workflows
  • Team collaboration with standardized query execution policies
  • Automated testing of BigQuery pipelines

BigQuery Analysis MCP Server FAQ

FAQ from BigQuery Analysis MCP Server: Smarter Analytics, Slash Costs?

How is authentication handled?
Uses Application Default Credentials from gcloud CLI or explicit service account files via environment variables.
What query limits apply?
Enforces both byte size and monetary cost caps configurable through server parameters.
Can this integrate with CI/CD pipelines?
Yes, JSON output format supports automated result parsing in CI environments.
Supported platforms?
Works on all systems compatible with Node.js runtime, including macOS, Linux, and Windows.

Content

BigQuery Analysis MCP Server

Overview

This server is an MCP server for executing SQL queries against Google BigQuery, providing the following features:

  • Query validation (dry run): Verifies if a query is valid and estimates its processing size
  • Safe query execution: Only runs SELECT queries under 1TB (prevents data modifications)
  • JSON-formatted results: Returns query results in structured JSON format

Features

Tools

  • dry_run_query - Perform a dry run of a BigQuery query

    • Validates the query and estimates its processing size
    • Checks query size against the 1TB limit
  • run_query_with_validation - Run a BigQuery query with validation

    • Detects and rejects DML statements (data modification queries)
    • Rejects data processing over 1TB
    • Executes queries that pass validation and returns results

Development

Prerequisites

  • Node.js (v16 or higher)
  • Google Cloud authentication setup (gcloud CLI or service account)

Install Dependencies

npm install

Build

npm run build

Development Mode (Auto-rebuild)

npm run watch

Installation

To use with Claude Desktop, add the server configuration:

MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "bigquery-analysis-server": {
      "command": "/path/to/bigquery-analysis-server/build/index.js"
    }
  }
}

Debugging

Since MCP servers communicate over stdio, debugging can be challenging. We recommend using the MCP Inspector:

npm run inspector

The Inspector will provide a URL to access debugging tools in your browser.

Authentication Setup

This server uses Google Cloud authentication. Set up authentication using one of the following methods:

  1. Login with gcloud CLI:

    gcloud auth application-default login

  2. Use a service account key:

    export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account-key.json"

Usage Examples

  1. Dry run a query:

    dry_run_query("SELECT * FROM bigquery-public-data.samples.shakespeare LIMIT 10")

  2. Run a query with validation:

    run_query_with_validation("SELECT word, word_count FROM bigquery-public-data.samples.shakespeare WHERE corpus='hamlet' LIMIT 10")


BigQuery Analysis MCP Server (日本語版)

概要

BigQueryでSQLクエリを実行するためのMCPサーバーです。クエリの検証(ドライラン)と実行を行い、1TB以上のデータ処理や変更系クエリ(DML)を防止する安全機能を備えています。

機能

このサーバーはGoogle BigQueryに対してSQLクエリを実行するためのMCPサーバーで、以下の機能を提供します:

  • クエリの検証(ドライラン):クエリが有効かどうかを確認し、処理サイズを見積もる
  • 安全なクエリ実行:1TB以下のSELECTクエリのみを実行(データ変更を防止)
  • 結果のJSON形式での返却:クエリ結果を構造化されたJSONで返す

機能

ツール

  • dry_run_query - BigQueryクエリのドライラン実行

    • クエリの検証と処理サイズの見積もりを行う
    • 1TBの制限に対してクエリサイズをチェック
  • run_query_with_validation - 検証付きでBigQueryクエリを実行

    • DML文(データ変更クエリ)を検出して拒否
    • 1TB以上のデータ処理を拒否
    • 検証に通過したクエリを実行し結果を返す

開発方法

前提条件

  • Node.js(v16以上)
  • Google Cloud認証設定(gcloud CLIまたはサービスアカウント)

依存関係のインストール

npm install

ビルド

npm run build

開発モード(自動再ビルド)

npm run watch

インストール

Claude Desktopで使用するには、サーバー設定を追加してください:

MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "bigquery": {
      "command": "node",
      "args": ["/path/to/bigquery-server/build/index.js"]
    }
  }
}

デバッグ

MCPサーバーは標準入出力(stdio)を介して通信するため、デバッグが難しい場合があります。MCP Inspectorの使用をお勧めします:

npm run inspector

InspectorはブラウザでデバッグツールにアクセスするためのURLを提供します。

認証設定

このサーバーはGoogle Cloud認証情報を使用します。以下のいずれかの方法で認証を設定してください:

  1. gcloud CLIでログイン:

    gcloud auth application-default login

  2. サービスアカウントキーを使用:

    export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account-key.json"

使用例

  1. クエリのドライラン:

    dry_run_query("SELECT * FROM bigquery-public-data.samples.shakespeare LIMIT 10")

  2. 検証付きクエリ実行:

    run_query_with_validation("SELECT word, word_count FROM bigquery-public-data.samples.shakespeare WHERE corpus='hamlet' LIMIT 10")

Related MCP Servers & Clients